The continous kernel of a nonsquare rational matrix function
نویسندگان
چکیده
منابع مشابه
Symmetric nonsquare factorization of selfadjoint rational matrix functions and algebraic Riccati inequalities
In this paper we shall present a parametrization of all symmetric, possibly nonsquare minimal factorizations of a positive semidefinite rational matrix function. It turns out that a pole-pair of such a nonsquare factor is the same as a pole pair for a specific square factor. The location of the zeros is then determined by a solution to a certain algebraic Riccati inequality. We shall also consi...
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملWhen is the Adjoint of a Matrix a Low Degree Rational Function in the Matrix?
We show that the adjoint A+ of a matrix A with respect to a given inner product is a rational function in A, if and only if A is normal with respect to the inner product. We consider such matrices and analyze the McMillan degrees of the rational functions r such that A+ = r(A). We introduce the McMillan degree of A as the smallest among these degrees, characterize this degree in terms of the nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1992
ISSN: 0024-3795
DOI: 10.1016/0024-3795(92)90020-b